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Abstract, A generic model, which applies rigorously to finite chains in the absence of 
inter-segmental interactions, and to subchains of infinite chains with practically arbitrary 
interactions, furnishes a simple recurrence relation. Self-avoiding walks on the diamond 
lattice (SAW-D) form the paradigmatic example for polymer science. The generic model 
as a whole is solved (in terms of parameters) for configurational statistics, asymptotically 
(large number n of segments) and on stated plausible conjectures, by classical methods, 
i.e. without postulating a singularity of power law form. The appropriate generalisation 
of the power law form of scaling theory emerges very simply, e.g. in terms of Kummer’s 
hypergeometric function. 

Extensive computations on the SAW-D model lead to two correction terms to the crude 
scaling form. In this way, some arguments in the literature on asymptotic theories can be 
settled. Several examples illustrate the danger of mistaking non-asymptotic experimental 
results for those desired in the asymptotic range. Thus, contrary to his own conclusions 
and those of Fleming, Bruns’s data for freely hinged hard-sphere chains are here reconciled 
with the ‘universal’ exponent y of Le Guillou and Zinn-Justin. For the SAW-D model, 
subject always to further refinements (which will never produce a final answer), the present 
experimental estimate for y is also shown to be about 1.2, in line with conjectural estimates 
from many forms of modem theory. This conclusion follows, even though we remove 
some bias which is usually inherent in relevant data analyses. In a number of ways, the 
successful cancellation by scaling theories of errors in non-asymptotic ranges due to 
finite-chain effects, etc, is quantitatively demonstrated. The non-singular generic model is 
briefly compared with the singular ‘universal’ blob model. A deeper methodological 
discussion of ‘asymptopia’ is reserved for a later publication. 

1. Introduction 

A reformulation of the excluded-volume problem for isolated polymer chains, which 
is generally regarded as a dominant ingredient of polymer theories, is presented here 
in the form of a generic model for such chains which includes many of the variants 
usually treated. One can show that a unique solution of the model exists on minimal 
assumptions, specifically without assuming the existence of a series expansion (see 
Cowell et a1 1986). By accepting the cost of such an assumption, we obtain below a 
convergent asymptotic solution which appropriately generalises that obtained by scaling 
theory. Ours emerges in the hypergeometric series form, which is highly characteristic 
for the methodology of uniform expansions in the physics of critical phenomena. In 
this and other respects, our results allow us to establish clear lines of continuity with 
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developments in 19th and 20th century mathematics (see Cowell et a1 1986), even 
though the problem is attacked mathematically from an angle which differs from most 
of the voluminous-and often exciting-physical literature on critical phenomena (for 
reviews see, e.g., renormalisation group methods: Barber (1977); scaling: de Gennes 
(1979); simulation: Baumgartner (1984)). 

Much of the novelty and purpose of this work depends on interchanging, relative 
to standard practice, the following factors: 

(i) the order in which two underlying limits, the thermodynamic limit and the 
configurational one, are generally taken (cf § 2), except implicitly in the ‘blob’ model 
(see § 9); 

(ii) the roles played by a point and an interval in statistical tests for discriminating 
between classical and ‘modem’ theories of criticality by the fit of data. In traditional 
tests a single point corresponds to the classical exponent value, and an interval to 
modem values (see equation (12) and Cowell et a1 1986); 

(iii) the relative levels of generality of mathematical formulations of classical and 
modern models (see 0 9 and Cowell et a1 (1982, 1986)). 

The three interchanges will be discussed in Cowell et a1 (1986) as part of a deeper 
discussion, while this paper focuses on the description, solution and data analysis of 
the generic model proposed. The motivation is outlined below. 

1 . 1 .  The objective of rehabilitating non-singular classical models 

Our aim is to rehabilitate the use of non-singular or ‘classical’ models which, unlike 
‘modern’ scaling and renormalisation group models, are characterised by not starting 
from the postulate of a singularity in the free energy at a critical point (though a 
singularity may be obtained a posteriori in individual cases). The same aim has been 
pursued using critical phenomena other than chain configurations under excluded- 
volume constraints, e.g. phase equilibria of polymer solutions (Gordon and Torkington 
1980) and elastic properties of gels (Gordon and Torkington 1981, Gordon 1984). The 
claims frequently voiced, e.g. by Fisher (1965) and de Gennes (1979), that physical or 
computer experiments can prove classical models to be qualitatively wrong are here 
again controverted. These claims have arisen from the vagaries of ‘asymptopia’, a 
hybrid of asymptotics and utopia, which continue to surprise both experimentalists 
and theoreticians (see 0 9, concerning equations (39) and (40), and Cowell et a1 (1986)). 
The simplest examples merely rest on mistaking non-asymptotic results for asymptotic 
ones (see §§ 6 and 9), or on large differences in the span of asymptotic domains of 
different statistical parameters of a model (see § 5). The mathematical snare of slow 
crossover domains is generally expected to simulate, by almost linear plots, attainment 
of the asymptotic region, because this very snare is implicit (Gordon and Irvine 1980, 
Gordon and Torkington 1981, Cowell et a1 1986) in the indispensable methodologies 
of refining (cf § 5) or perturbing models. Classical models, and the refinement pro- 
cedures based on uniform convergence which are appropriate for them, score at present 
in this respect and in other ways, especially in their ease of handling system-specific 
features (cf Gordon and Torkington 1981, Gordon 1984). 

Accordingly, our objectives lie in the application of models to physical or computa- 
tional experiments. Where we point out weaknesses of present-day scaling and renor- 
malisation group theory, our purpose is not, therefore, to detract from their achieve- 
ments, especially in advancing computational techniques and in generating asymptotic 
statistics of abstract models in numerical form. Such numerical results, whether integral, 
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rational or irrational, are obtained by non-rigorous methods which are frequently of 
great elegance. However, unlike these asymptotic theories, non-singular methods 
typically develop their refinements by proceeding inwards towards a critical point, and 
therefore by a series of corrections in free energy of decreasing magnitude (Gordon 
and Torkington 1980,1981). Accordingly, such model theories can never be considered 
qualitatively wrong since their inward-moving process of uniformly convergent model 
refinement has not been, and could not be, blocked by more refined experiments, nor 
need it involve an excessive number of adjustable parameters. By contrast, the 
refinement outwards from the asymptotic region towards ‘crossovers’ (cf § 9) by modern 
theories go in increasing changes of free energy. 

2. Description of the generic model 

The generic model here proposed is defined by a simple stationarity condition: 

In this notation the phase-average scalar product (s, * s,) of the initial and final segment 
vectors si and sn of the subchain is the familiar correlation function. Equation (1) is 
valid for all i ,  j, k of infinite chains, on or off a lattice, belonging to models with any 
physically relevant type of intramolecular interaction behaviour. It is also valid for 
finite chains which are freely intersecting (i.e. devoid of interactions). For illustration 
we choose in this paper the statistical ensemble of configurations of doubly infinite 
walks on the diamond lattice, with self-intersections allowed only if the loops formed 
thereby contain more than r links. This parameter r, the non-intersection range, must 
be sent to infinity to generate the familiar self-avoiding random walk case. For finite 
r, the ensemble of walks represents those of a finite-order Markov process (Domb and 
Hioe 1970). The theory is developed below for the configurational statistics of the 
finite subchains in this ensemble and their asymptotic behaviour. If the configurational 
asymptotics were found not to agree with those of the self-avoiding free chains usually 
treated (see § 41, the subchain behaviour is the physically relevant one, because we 
can scatter only from finite objects! 

3. Solution of the model 

In terms of the difference operator 

V f ( n )  = f ( n ) - f ( n  -1) 
the following two equalities are easily derived from equation (1) for chains comprising 
n segments: 

V4[(n+1)2R2,]=V2Lz,=2(s1.  s,) (3 )  
where by definition the length of the end-to-end vector is 

the steps being labelled sequentially. Equation (3 )  for the mean-square radius Ri 
follows similarly via its expression in terms of ( s i  s j ) .  
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For freely intersecting random flight chains we have r = 1, equations (3) are valid 
and can be solved to yield classical results such as Flory’s (1969) equations (20) and 
(22). 

The following recursion defines the function f( n, r): 

* s n ) =  x(s1 . s n - 1 )  e x ~ f ( n ,  r )  (r>O, n >  1) ( 5 )  

as a measure of the excluded volume, in whose absence f(n, r) = 0. Here x is the 
neighbour correlation in chains with range 2: 

x = (sl . s2) ( r = 2 )  (6) 

e.g. in free trimers with excluded volume. We restrict our model to x > 0, i.e. mean 
bond angles >90°. (The function f( n, r )  is not defined for the highly artificial case of 
infinite self-avoiding walks restricted to right-angled steps on a square lattice.) 

The following two conjectures are not needed subsequently, but introduced merely 
to show that f( n, r) is almost certainly well behaved. Formal proofs of (7) and (8) for 
specific classes of submodels do not seem out of reach. 

Conjecture 1. 

Conjecture 2. 

Equation (7 )  assumes that the correlation between the end links of a subchain are 
not increased by freeing one end link from some overlap restrictions. Equation (8) 
assumes that the correlations do not increase with the length n of the subchain. 
Equations (7) and (8) are respectively equivalent to (9) and (10) which boundf(n, r ) :  

l / x  2 expf(n, r) (9) 

expf(n, r ) >  1 (10) 
for all n, r specified in equation ( 5 ) .  In the same spirit we occasionally adopt the 
following for specific arguments. 

Conjecture 3. 

f ( n ,  r f  1) 2 f ( n ,  r )  (for all r, n )  (11) 
i.e. increasing the range of overlap restrictions does not decrease the correlation between 
the end links. Finally we adopt 

Conjecture 4.  

limf(n, r ) = g ( n )  and lim g( n )  exists. 
r-m n-m 

This formalises an assumption generally implied. All previous model theories for the 
asymptotics of the excluded-volume effect would need refinement if (12) were not true. 
Scaling theories require the limit g( n )  + - (In x). We now introduce one important 
new assumption 1, for convenience first in a strong form la, to be greatly weakened 
later to form l b  in a later paper (Cowell et a1 1986). 



A generic model for long self-avoiding chain molecules 3317 

Assumption 1 ( la ,  strong form). For all r, the functionsf( n, r )  can be uniquely expanded 
in a convergent series of the form 

f( n, r )  = a,( r )  + a,(  r ) /  n + a2( r ) / n 2 + .  . . (13) 

(for r = 1, all the coefficients ai vanish). 

This assumption suffices to obtain from simpler premises, and very easily (see next 
paragraph), an asymptotic solution that contains the usual scaling form as a very 
special case. The existence of series (13) for f ( n ,  r )  is, of course, unproblematical if 
n is finite, but the problem is its uniqueness. With increasing n and increasing truncation 
point at order n - 1 ,  the coefficients a i ( r )  may or may not converge. In Cowell et al 
(1986) we give the minimal restriction on our function space that ensures uniqueness 
for a,( r ) ,  r = 2,3,  . . ., by its convergence when n + CO. 

Substituting equation (13) iteratively in equation ( 5 )  and summing yields 

(sl s,)= A ' ( x  exp a,)" exp(a, In n + a 2 / n  +. . .) 
-- A" exp( - En)/ n2-y.  

The dependence on r of the ai and of derived parameters: 

--E=a,+lnx (16)  

y = 2 - a ,  (17) 

has been suppressed, but should be borne in mind. The crudely truncated form of the 
solution shown in equation (15 )  is substituted into equation ( 3 )  to calculate L: and 
R i  by approximating respectively the two or four necessary summations by termwise 
integrations after expansion of the exponential in series. This leads to solutions given 
in terms of Kummer's hypergeometric function : 

M ( a ,  b, z ) = 1 + a z / b + [ a ( a + l ) / b ( b + 1 ) ] z 2 / 2 ! + . .  . + [ ( a ) , / ( b ) , ] z " / n ! + . .  . (18a) 

where b must not be a negative integer, and 

(a) , ,  = a ( a +  1 ) .  . . ( a + n  - 1) .  

L: = ALn + B L n Y M ( y -  1,  y +  1,  - - E n ) / y ( y  - 1 )  

(18b) 

(19) 

The A are new integration constants and the B are related to A" in equation (15). 
The A and B can be compared with experimental data. 

We recall the asymptotic form (Abramowitz and Stegun 1970) of the Kummer 
function: 

The solutions are 

R: A ~ n / 6 +  B , n Y M ( y  - 1, y 3, - & n ) / y (  y - l ) ( y +  1 ) (  y + 2 ) .  (20) 

M ( u ,  b, Z ) = ( T ( b ) / T ( b - a ) ) (  -z)-"(l+O(Z-l))  0 2 Re( z).  (21) 

(22) 

(23) 

ryY+  i ) / ( P )  (24) 

Accordingly, from equations (19) and (20), the familiar expansion ratios 
f f 2  = L -  L: /n  
Ly2 R = - R i / 6 n  

both tend, for large n at constant r, to 
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i.e. to a finite constant-as in 'classical' model theories-but here with the exception 
of the case E = O .  

4. Comparison of finite chains with subchains of infinite chains 

Consider a subchain of n, steps in an infinite freely intersecting ( r  = 1) chain, and 
increase the excluded-volume interaction range stepwise by raising r in unit steps. It 
is plausible that when r reaches r = n , ,  the subchain would have larger dimensions 
than a free non-intersecting chain of length n,. This is because, while any conformation 
available to the subchain is also available to the free chain, some rather compact 
conformations of the free chain are not accessible to the subchain of an infinite chain, 
namely those.that trap the chain ends in positions where continuation of the chain to 
infinity is impossible. Pursuing the comparison between a free chain and a subchain 
of an infinite chain of the same length n,, let rmin(n,) be the lowest value of r (n , )  for 
which the dimensions of the subchain exceed those of the free chain. Here the 
dimensions may be expressed by L? or R?,  which might yield slightly different rmin. 
In either case 

and we adopt the following conjecture. 

Conjecture 5. 

rmin(ns) = O( ns), (26 )  

Indeed, the only alternative, ( rmin( n , )  = o( n, ) ) ,  is quite implausible. It would imply 
that, for sufficiently large length n,, the free non-intersecting chain would be less 
expanded than the subchain (in an infinite chain) of the same length n, whose 
Markovian (loop-avoidance) range r was an indefinitely small fraction of its length 
n,. Use of conjecture 5 allows the asymptotic laws (19) and (20) to be applied to 
non-intersecting free finite chains, as distinct from finite subchains of infinite chains 
with self-intersections restricted to range greater than r. Note that for free non- 
intersecting chains r = n, and the suppressed r dependence of E and of y becomes a 
suppressed n dependence. Only the proportionality constants would change, not 
necessarily by exactly the same factor for Lt  and R:, owing to the rescaling involving 
rmin. Equation (19) becomes 

L : - A n + B n Y M ( y - l , y + l , - E n )  

and similarly for R; (equation (20)). 

5. Asymptotics of the finite-chain correction: resolution of historical problems 

The truncation in (14) renders (15)  approximate, but it becomes exact if E is allowed 
to become a function of n. It is generally thought that for self-avoiding walks (SAW) 

on the diamond lattice, y > 1, as is indeed likely, which is here equivalent to E + 0 as 
n + W. Monte Carlo studies cannot discriminate between zero and non-zero E, but at 
best lead to conjectured bounds, and the same applies to attempts to discriminate 
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between unity and other values for y. For purposes of illustration, consider the plausible 
asymptotic form for E :  

E -- EonP-' (OS p c 1). (28) 
Outside this range, p does not affect the exponent y: for p <0, M ( a ,  b, z )  + 1; for 
p > 1, correlations would decay faster than the exponential rate of the self-intersecting 
chain, which is unlikely. We find, after rearranging terms, 

(29) n ( l - P ) ( Y - l )  

with the aid of (21). Such an asymptotic contribution by p to the exponent would 
inject a crossover behaviour or very slow continuous variations into the apparent 
exponent in physical or computation experiments, if they can be extended far enough 
to enter the range of validity of equation (28). 

Two examples of difficulties encountered in previous theories, which are removed 
in the light of our Kummer function solution, now follow. 

The Monte Carlo data (below) suggest that E(n)n is a slowly varying function, so 
that the Kummer function M in equation (27) remains nearly constant over the range 
100> n >  20. Assuming B and y to be in their asymptotic ranges, the following 
behaviour is thereby simulated by data: 

LZ, L- An + BnY. (30) 
The divergence of views between Domb (1963) and Flory and Fisk (1966) may thus 
be reconciled. Domb obtained reasonable results for y using n values up to as little 
as 15, while Flory and Fisk contended that n L- lo6 is required in practice for approach 
to the asymptotic limit. (Here Domb omitted the term An in (30), but included the 
constant term-arising as an integration constant-which we dropped here for the 
asymptotic range.) The latter authors were right in that E + 0 is required so that the 
correlation decay for the mid-chain be dominated by the power law rather than the 
exponential form, thus reflecting the long range nature of the excluded-volume effect. 
But Domb was right in that, as our computer results now show, En turns out to be 
nearly constant (=3, as seen in table 5 for E )  for 2 0 s  r S 100, and probably even for 
a larger range. Thus the usual plot will show a practically constant y; this may be the 
correct asymptotic value for y, e.g. for equation (28), provided p = 0, but not otherwise. 
Thus our analysis provides conditions for which two ranges of n lead to consistent 
exponent values, namely Domb's low range and Flory and Fisk's much higher range, 
at which the orientational correlations have adequately decayed. However, experiments 
can render exact values of p > 0 plausible, but never prove them. 

Next, to compare the asymptotics of R: with those of LZ,, assume that for both 
cases BnY-'>>lAl in equations (19) and (20). By putting E n =  k, a constant, and 
approximating y L- 1.2, so that [ (y  + 1)( y+2)]-' -- 0.142, these equations yield the result 

R:/  LZ, = 0.142M( y - 1, y+3 ,  - k ) / M (  y - 1, y + 1, -k). (31) 
Previous theories omitted the correction term for finite systems provided by the 

ratio of Kummer function values in (31), so that the ratio R : / L :  was predicted to be 
0.142. McKenzie (1976), noting that computer experiments gave a value of about 
0.157, remarked 'the reason for this disprepancy is not clear'. Again, since we find 
En = k =  3 (table 5 ) ,  we immediately obtain, via equation (31), R: /L:  =0.154. Thus 
our model theory has eliminated the problem, locating it in the second approximation 
to the finite-system correction, which arises mathematically from the delicate manner 
in which the asymptotic limit is approached. 
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6. Application to BNn'S Monte Carlo modelling of the excluded volume 

Bruns ( 1977) generated chains by a computer dimerisation technique, with hard-sphere 
potentials, centred at hinge and endpoints, of diameter A (= 0.1, 0.3, 0.5, 1.0) times 
the link length. For A =2 ,  the model could also be suitably reinterpreted. He fitted 
his data for L: and R: to the power laws any  and a'ny' respectively (table 1) .  His 
concern was to test the universality hypothesis, i.e. that a universal exponent depends 
only on the dimensionality of space. Since table 1 shows a dependence of the fitted 
slopes (figure 1) on the strength A of the excluded-volume effect, Bruns rejected the 
hypothesis, and Fleming (1979) reached a similar conclusion from different data. The 
immediate acceptance of the slopes as representing asymptotic exponents of an assumed 

Table 1. Bruns's (1977) test for universality using his Monte Carlo data (see text) 

h a Y a' Y'  

0.0 1 .Ooo 1 .om 0.1667 1.000 
0.1 1.089*0.022 1.013*0.004 0.1904rt0.0025 1.005 i 0.003 
0.3 0.865f0.003 1.113*0.007 0.1442i0.0032 1.1 1 1  * 0.004 
0.5 0.966 * 0.018 1.174 * 0.004 0.1586 * 0.0017 1.169 0.002 
1.0 1.603 *0.050 1.194*0.006 0.2460k0.0045 1.198*0.003 
2.0 4.8750.16 1.159 * 0.006 0.6410 f 0.012 1.189 * 0.004 

10 

6 
N 

L 

2 

c 

I I I I I I l 
1 2 4 6 a 

l o g  n 

Figure 1. Bruns's (1977) test for universal exponent using his Monte Carlo data (see text). 
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power law is always statistically questionable (Gordon and Torkington 1980, 1981, 
Gordon 1984), as we again illustrate now. Bruns’s model requires at least the more 
searching asymptotic laws (cf equation (30)): 

Li - an + bnY 

R: - a’n + b’n’”. 

(32) 

(33) 

Figure 1 shows that fits of equation (32) with fixed y = 1.176, the value suggested 
by scaling theory (Le Guillou and Zinn-Justin 1977), to Bruns’s data are virtually 
indistinguishable from his own fits with variable y but fixed a = O .  Table 2 lists our 
parameters for equations (32) and (33), optimised using Bruns’s data; the values of a 
and a‘ are reasonable, as can be made plausible by simple arguments. 

Table 2. Optimised parameters fitting (see figure 1) equations (32) and (33) to the data of 
Bruns (1977). 

A a b a’ b‘ 

0.1 1.064*0.024 0.039*0.009 0.188 *0.001 0.003 *O.o004 
0.3 0.577 f 0.021 0.392 f 0.008 0.100*0.005 0.063i0.002 
0.5 -0.009 i 0.063 0.959 0.023 0.007*0.007 0.150*0.003 
1.0 -0.639 *0.104 2.010 k0.038 -0.111 *0.010 0.320*0.004 
2.0 0.807 * 0.349 4.084* 0.128 -0.223 f 0.079 0.766 * 0.029 

7. Application to data on light scattering from polystyrene solutions 

By examining five fractions of polystyrene in toluene, Utiyama et a1 (1977) reported 
a non-linear concave-downward plot of (Rh/ m ) ,  the ratio of mean-square radius to 
molecular weight m, against In m, contrary to previous theoretical expectations. The 
exponents y deduced from the variable slope decreased monotonically from 1.25 to 
1.1 for lo6< m < 16x lo6. They concluded that the true asymptotic exponent was 
probably unity. Ross-Murphy (1980) noted that ‘this unexpected result, if sustained, 
has consequences for much of the current work’. The experimental requirements, e.g. 
corrections for multiple scattering, etc, do make such investigations extremely demand- 
ing. The more recent reinvestigation by Miyaki er a1 (1978) of polystyrene fractions 
up to m = 57 x lo6 in benzene has reassured scaling theorists. The linear fit of a2 
against M t Z  (i.e. y = 1.2) is much better, though some decline in the exponent at very 
high molecular weight is also visible in their figure 10 and in two similar plots for 
other polymer/solvent systems (their figure 11). This merely confirms that some 
crossover effect at high molecular weights is to be expected, depending not only on 
multiple scattering effects, but also on solvent quality and hence sensitively on solvent 
purity, etc, and hence also progressively less reproducible as the molecular weight is 
raised. These findings support our strategy of cautiously extending the refinement of 
the non-singular classical model towards the critical point, which we now exemplify 
using the data of Utiyama et a1 (1977) as an example. 

Our model suggests an attempt to fit these data to the asymptotic form 
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Table 3. Optimised fit to equation (34) of data by Utiyama et al(l977). B = 2.33, y = 1.274, 
~=3.11~10-~. 

m/106 Experiment Theoretical 

1.29 1.56 1.561 
2.58 1.69 1.697 
6.12 1.86 1.857 

11.1 1.95 1.947 
15.9 1.99 1.995 

namely equation (20) with A=O and n rescaled to the molecular weight m, and 
consequent rescaling of B and E. Table 3 indicates that the three-parameter fit is clearly 
within experimental error. Of the three parameters, y is optimised at 1.274, not very 
far from estimates produced by singular theories which assume an asymptotic power 
law to exist and to apply in the experimental range. The 'amplitude' B is freely adjusted 
by optimisation, as is usual. Finally the Kummer function becomes a correction factor 
multiplying the usual scaling form BmY-', if E # 0. The optimum value E = 3.1-1 x lo-' 
surely makes a minute contribution to the Hamiltonian and reflects effects which are 
of doubtful reproducibility at present. Its reproducibility could be tested by repeating 
the experiments of Utiyama et a1 (1977). If E is proved to be irreproducible, neither 
scaling nor classical theories can be rejected by light-scattering experiments. If E proves 
to be reproducible, its physical meaning in terms of its definition (16) encourages 
attempts at its theoretical interpretation. Such theories would depend on system-specific 
parameters (especially through the contribution log x, which is easily calculated from 
molecular models). 

If we optimised the fit of (34) to the data of Miyaki et a1 on different polystyrene 
samples and a different solvent, E would be even closer to zero, and its reproducibility 
accordingly poorer. Since the scattering units are finite chains, a finite E is expected 
theoretically, and no appeal to universality considerations can logically invalidate this 
classical strategy of model refinement. 

We now illustrate the same immunity towards invalidation of the proposed strategy 
by Monte Carlo experiments. 

8. Computations 

8.1. 1000-step self-avoiding walks using Lawler's (1980) loop deletion method 

Five sets of Monte Carlo data were generated for 1000-step four-choice walks on a 
diamond lattice, subject to non-intersection ranges r = 20, 40, 60, 80 and 100. Thus 
any loop of less than r steps ocurring during the generation of the random walk was 
deleted, and the walk continued from that point. To this end the point coordinates 
reached after each step, relative to the origin at the start of the walk, were stored in 
the virtual memory of the computer, which allowed simple but time consuming checks 
on loop formation. 

It is known that the weighting of all distinct SAW is biased by the loop deletion 
process. Thus if SAW of fixed length n are collected as they arise from truly random 
walks of fixed length n + m, say, but with each loop being deleted as it occurs (with 
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overall shortening of the walk from n + m to n ) ,  different rotomers among the SAW 
may be formed with different frequencies instead of being equiprobable. For example, 
for the square lattice, with n = 3, m = 5, the most compact trimer, shaped like the Greek 
letter pi, is generated in 12 ways, while the most extended (straight line) trimer is 
generated in 13 ways. However, our procedure, instead of using fixed m, in effect 
averaged all weights over 0 < m < y, with y >> 1, which intuitively should reduce this bias. 

On completion of the loop-free walk, the orientation vectors of each of its steps 
were found. Correlations between pairs of these vectors (cf equation (1)) were readily 
evaluated and scaled to integer values i l ,  13 ,  (the only possible values for a diamond 
lattice up to a normalisation). The total storage for each average correlation thus 
required only three integers: (i)  the number of correlations added, (ii) their sum and 
(iii) the normaliser (=3) .  Counters (i)  and (ii) directly accumulated results for 
successive walks which were generated. This integer representation was important in 
eliminating rounding errors which otherwise attend manipulation of such large amounts 
of real variable data. Each run of approximately 1 h CPU generated data from between 
1100 and 1700 walks, depending on the non-intersection range r, which were stored 
in a data file. Approximately 60 files (see table 4) were generated for each r value, 
and then condensed to a single file for each r. 

Table 4. Totals for numbers of files and loop-deleted walks generated and upper cut-off 
values of n employed in optimising data to equations (35)-(37). 

cut-off 
Range r Number of files Number of walks (35). (36) (37) 

20 59 
40 58 
60 61 
80 57 

100 60 

100 300 
81 000 
79 300 
62 965 
64 954 

39 24 
64 41 
89 54 
90 66 
90 75 

The total number of Monte Carlo walks in our data sample is probably among the 
largest ever created for examining the excluded-volume problem. Each 1000-step walk 
may be considered as equivalent to 1000/r SAW of r steps. Hence our database is 
equivalent to between 660 000 100-step and 5 x lo6 20-step walks. 

as functions 
of the subchain length j = k - i were collected, using subchains with ends i and k falling 
in the central 800 steps of each 1000-step walk only, in order to minimise end effects. 

Data on the means and standard deviations of the correlations (si * 

8.2. Data analysis 

The Monte Carlo data were fitted to each of the forms (cf equation (15)): 

(sl sn)  = A exp(-m)/n2-Y (35) 

ln((s, s,)) = ln(A) - En - (2  - y )  ln(n) (36) 

(37) [((si . s n ) / ( s i  * S n - 1 ) )  + ((si * s n + i ) / ( s i  . sn))1/2 = e x ~ ( - & ) [ l - ( 2 -  r ) / n l .  
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While (35 )  and (36) contain three parameters, (37) represents an attempt at fitting 
the data with two. Equation (35) required a Newton-Raphson procedure, whilst linear 
least-square analyses sufficed for equations (36) and (37), the parameters being found 
by minimising the sum of squares of residuals. Sums of both weighted and unweighted 
residuals were formed. The weights were taken as the reciprocal standard deviations 
of the data over the appropriate sets of approximately 60 files for each r. The range 
of n values used for the optimisation varied with r as follows: the lower limit of n = 10 
was chosen as a compromise between including the most accurate data (the standard 
deviations increased more than linearly with n), and the aim of restricting the use of 
equations (35)-(37) to their unknown range of asymptotic (large n )  validity. Domb 
and Hioe (1969) and Edwards (1965) proposed that SAW of as few as 10 steps are 
close to exhibiting the asymptotic exponent behaviour, so that our choice was probably 
reasonable. The upper value was taken as the first data point, on increasing n from 
10, at which either the standard deviation became greater than or equal to the data 
point (s, s,)  itself, or n = 90; this was found to ensure that (s, s,) was positive (and 
its logarithms real for equation (36)). The set of upper n values is shown in table 4, 
column 4. 

The upper limit for n was modified when using equations (37) (or (38) below) by 
choosing the first data point (on increasing n )  for which the error estimate was greater 
than 0.05. Here some cut-off, inevitably selected arbitrarily, was needed to satisfy the 
competing demands of a sufficiency of data for optimisation and reasonable accuracy. 

Figure 2 shows plots for each of the five r values of the mean correlation against 
j .  The plots are smooth and support conjectures 1 and 2. Figures 2 and 3 show the 

30 50 70 90 

Figure 2. Decay of correlations (s, . s,) with length n of walks for five different non- 
intersection ranges ?. Data are represented by error bars and the curves are optimised fits 
to equation (35).  

10 
n 
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n 

10 3 0  50 7 0  9 0  
0 I I I I I i I I 1 

- 2  

- 4  

- 8  

-10 

Figure 3. Fitting of logarithmic form of correlation decay (equation (36)) to the data (cf 
figure 2). 

Table 5. Weighted and unweighted fits to equation (35) for the correlation (s, . sn), using 
1000-step random walks generated with deletion of loops of size less than r steps and 
subchains of length n e the cut-off values in table 4. 

Weighted fits to function form 

r 20 40 60 80 100 

A 0.547i-0.131 0.134i-0.008 0.136i-0.005 0.159*0.004 0.175i-0.006 
E 0.156i0.009 0.098i0.002 0.061*0.001 0.041*0.001 0.031~0.001 

Er 3.11 i-0.18 3.96 i0.08 3.65 i-0.06 3.28 i-0.08 3.07 i-0.10 
2 - y 0.607*0.142 0.091 i-0.032 0.233*0.020 0.377 *0.014 0.458*0.016 

Unweighted fits 
~~ ~ 

r 20 40 60 80 100 

A 0.534k0.128 0.136*0.008 0.133*0.005 0.157*0.004 0.171*0.006 
E 0.156*0.009 0.098~0.002 0.061*0.001 0.041iO.001 0.031~0.001 
2- y 0.593*0.142 0.099*0.032 0.225*0.019 0.372i0.135 0.448*0.016 
E r  3.13 *0.19 3.91 *0.07 3.68 *0.05 3.29 k0.05 3.10 k0.06 
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0.7 

data and optimised weighted fits to equations (35) and (36) respectively. The error 
bars show small systematic (periodic) deviations. They suggest that fine-scale properties 
of SAW would be missed by the smoother statistics of chain dimensions, e.g. Li .  Tables 
5 and 6 reveal that, as r increases, the parameters obtained from the weighted fits of 
equations (35) and (36) appear to converge, whilst the unweighted fits show no such 
convergence. This suggests that the weighted fits off er a better representation. Certainly 
they are the only fits useful for extrapolation purposes, and we restrict ourselves to 
the weighted optimisations from now on. 

Figure 4 (cf table 7) presents data and fits of the form of equation (37), which 
again show systematic fluctuations. The fluctuations become stronger for the simplified 
form: 

(sl s,)/(sI . s,-J=exp(-E)[1-(2- y ) / n ] .  (38) 

I I I I 

100 Range r / 

” ”  
+ 0.9 

0.8 

-” I I 

Table 6. Fits similar to those in table 5 ,  but using equation (36). 

Weighted fits 

r 20 40 60 80 100 

A 0.696i0.342 0.155iO.069 0.133i0.045 0.158i0.033 0.173i0.038 
E 0.146i0.012 0.095i0.002 0.061 iO.001 0.041i0.001 0.031 iO.001 

Er 2.93 i 0 . 2 4  3.80 i 0 . 0 7  3.66 i 0 . 0 6  3.27 i0 .05  3.05 i 0 . 0 7  
2- y 0.749*0.194 0.160i0.036 0.227i0.022 0.375i0.015 0.456i0.018 

Unweighted fits 
~~ 

r 20 40 60 80 100 

A 0.303i1.068 0.056i0.371 0.063i0.379 0.081i0.179 0.077i0.145 
E 0.181 *0.022 0.111*0.005 0.073i0.004 0.05OiOOO2 0.042i0.001 

Er 3.62 i 0 . 4 4  4.46 i0 .19  4.37 i 0 . 2 2  4.02 k0.13 4.16 i0 .13  
2 -  y 0.242*0.508 0.299*0.154 0.111iO.151 0.087i0.068 0.106*0.055 



A generic model f o r  long self-avoiding chain molecules 3327 

0 15 

0 10 

E 

0 05 

0 

A 

/ 

ir I I I I I 
0 1  0 2  0.3 0 4  0.5 

&.- \c' 
ir I I I I I 

0 1  0 2  0.3 0 4  0.5 
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Figure 5. Exponential decay parameter E deduced from weighted fits to equation (35) 
(triangles) and equation (36) (circles), plotted against an inverse non-intersection range 
scale. Lengths of walks = 1000. Interpolation curve drawn by hand; note the uncertain 
extrapolation to l/range = 0: lower arrow ( E  = 0), scaling theory; upper arrow: ( E  > 0): 
classical theories. 
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Domb (1963) employed a similar smoothing device when analysing his exact enumer- 
ation data for short chains to remove even-odd effects, as did earlier authors cited by 
him. For much longer chains, our data suggest the existence of additional systematic 
variations of periods greater than 2. 

Figure 5 plots the optimised E values for equations (35) and (36) against lO/r. The 
finiteness of correlations must enforce E (00) a 0. Therefore, the roughly linear form 
(Er = constant), seem to govern the range 20 < r < 100, and which probably extends to 
higher r values, must eventually yield to a concave-upward course for sufficiently large r. 

Figures 6 and 7 plot respectively the apparent exponent y and the pre-exponential 
‘constant’ A against lO/r. We see that y approximately extrapolates to 1.2. This 
supports the conjectural scaling theory (de Gennes 1979) if and only if &(CO) = O .  The 
interesting fact that y goes through a maximum with increasing r recalls the maxima 
in y against length of free chains in experimental work by Utiyama er a1 (1977) (see 

0 25 

0 2 0  

A 

0 IS 

0 10 
0 0.1 0.2 

10 I range 

0 

A 

0.3 

Figure 7. Pre-exponential parameter A from weighted fits of equations ( 3 5 )  (triangles) and 
(36) (circles). Like 2 - y (figure 6), A goes through a minimum. Compensations arise 
because the two parameters are correlared. Scaling theory does not predict the extrapolated 
value. 

Table 7. Fits similar to those in tables 5 and 6, but using equation (37). 

r 20 40 60 80 100 

E 0.145 f 0.054 0.057 1t0.019 0.045 f 0.009 0.035 f 0.008 0.023 * 0.010 

Er 2.90 Itl.08 2.29 i 0 . 7 8  2.69 * 0 . 5 5  2.79 20.66 2.30 f1.03 
2 -  y 0.720*0.088 0.750It0.041 0.530*0.021 0.502f0.019 0.610*0.024 
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above) in their theoretical treatment and in other theories (see below). The fact that 
the pre-exponential ‘constant’ A goes through a minimum (figure 7) reveals its tendency 
to compensate the variations of the apparent exponent. 

Table 7 presents similar results derived using equation (37). The variations in y 
are not now so pronounced, but they fail to give a satisfactory extrapolation. In 
contrast, E is well behaved and supports more strongly the suggestion that Er=a 
constant, approximately 2.6. 

9. Discussion 

The model used in the analysis is the recurrence relation (3), which we extended 
provisionally by assumption la ,  and even by such a crude manoeuvre as guessing an 
asymptotic form like equation (28). The purpose was to deal, using a minimum number 
of parameters and in several stages, with what are called crossover phenomena in 
scaling theory and whose existence is immediately apparent from our data analysis, 
though it had escaped the notice of several investigators relying on crude scaling 
because of a ‘cancellation of errors’ to which we return presently. 

These initial crude applications of scaling theories eventually revealed the intrusion 
of crossovers into experimental ranges also. Several teams recently sought corrections 
to scaling theory from more extensive Monte Carlo experiments on SAW. Extrapolations 
from very short walks are presented by Majid et al (1983) who generated exactly all 
SAW on the FCC lattice up to length 12, and Lyklema and Kremer (1985) sampled 6 
million two-dimensional SAW (produced yith large (99.3% ) ‘attrition’ but without bias) 
of length 48. They were motivated by the realisation of the ‘wide range of (previous) 
estimates for the correction to scaling exponent’ and concluded that previous ‘exact 
enumeration data have been done on series which are too short and consequently cannot 
give correct results’. Majid et a1 (1984) explored long-chain ensembles of so-called 
kinetic growth walks generated by Monte Carlo experiments (up to 10000 walks of 
length 800 on the cubic lattice). They fitted results to the classical exponent ( y = 1 in 
our notation) by assuming a logarithmic correction with an adjustable parameter a, 
found to be 0.2: R ;  - n(ln n)”. Very recently, using an alternative kinetic ‘wiggle’ 
method, MacDonald et a1 (1985) could confirm the uncorrected scaling exponent from 
a log-log plot for chains of lengths in the range 11-251. For a graphical display in 
their figure 3, they drew a line of slope ( y = )  1.183, about halfway between their 
least-square value (1.188, their table 2)  and that predicted from series expansion (1.178) 
by Le Guillou and Zinn-Justin (1977). Even this small reduction of the slope below 
the least-square value helps to allay the suspicion that the asymptotic regime has not 
been attained over the range 11 s n s 251, though some curvature towards a lower 
slope is still suggested at n 2 200. 

We turn to the blob theory, which developed more closely in connection with 
physical experiments on much longer polymer chains, and abandoned any attempts 
at the forbidding calculation of the coefficients of the actual scaling series. Instead it 
invented closed-form correction functions with empirical parameters to the conjectured 
leading term for the express purpose of coping with the crossovers. Fujita and Norisuye 
(1981) defined blob theory in terms of two postulates. 

The first postulate was exactly equivalent to our equation ( l ) ,  i.e. to the basic 
definition of the model we propose here. This means that, implicitly, subchains of 
infinite chains are used rather than free chains, or one may say that the thermodynamic 
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limit has been taken before the calculation begins. Weill and des Cloiseaux (1979) 
make this explicit at the end of their paper: ‘It is clear then that the hydrodynamic 
properties of these subchains are generally sensitive to the same cross-over effects as 
an isolated chain’ (cf § 4). 

The second postulate of the blob theory (Fujita and Norisuye 1981, Farnoux et a1 
1978, Weill and des Cloiseaux 1979, FranGois et a1 1980) ( a )  consists in assuming a 
power law form for the asymptotic solution, subject to a jump in the value of the 
exponent y occurring at some value of n to be determined by data fitting, and ( b )  
uses specific empirical equations, with in built discontinuities of the relevant variables. 

Domb and Hioe (1969) had used essentially the same approach, but with a smooth 
empirical power series expansion with adjustable coefficients instead of the specific 
empirical equations, which thus embody the advance which is found in the blob 
model. Indeed, Domb and Hioe argued convincingly that the exact form of their 
expansion was not of interest. 

These procedures should be compared with our assumption l a  and the parameters 
E and p which it generates. To decide which procedure is statistically best would 
involve comparative data fittings for detailed analysis of the relative costs in adjustment 
of empirical parameters. While scaling theory sets out to refine a fixed conjectured 
asymptotic form, our approach of moving in towards the critical region does not. We 
thus avoid the need to guess the stage (as n increases here) when physical data have 
entered the asymptotic range of a sufficiently refined model. (The acceptable entry 
point depends on the accuracy of the experiments. Ultimately, as experimental accuracy 
increases indefinitely, the asymptotic range of a singular model can never be entered 
by physical data.) No statistical test can firm up such a guess as long as empirical 
closed forms or series are involved. Methodologically, we regard our classical pro- 
cedure of model building as superior on the grounds of simplicity, of economy in 
parameters, of the smoothness of the ‘crossover’ implied (in comparison with blob 
theory) and of the ease of refinement in terms of molecular information. To give up 
a diamond lattice framework of molecules with tetrahedral bond angles for blobs 
would need a testable advantage that stands up to analysis. 

de Gennes (1979, p 182) has argued that classical theories, e.g. those of Rouse for 
chain dynamics, or many SCF theories such as Flory’s model of chain conformational 
statistics (de Gennes 1979, p 46), owe their ‘unexpected successes’ (p  182) to large 
cancellation of errors. But the cancellation of ‘errors’ is precisely the mark of a good 
approximate (e.g. asymptotic) theory, including both classical and scaling types. 
Indeed, all our models of criticality in physics are inevitably crude simplifications. 
Whether the errors compensated by approximate theories are estimated to be large or 
small will depend on the rate of convergence of the solution in the form it emerges 
from the modelling methodology. The race of convergence of physical data towards 
presumed asymptotic solutions of critical models is generally not known since, even in 
cases of simple and analytically soluble models, this rate is generally grossly afected by 
small perturbations of the model. By a small perturbation we mean a change in the 
model Hamiltonian amounting to a negligible fraction of kT per particle (per polymer 
chain here). Possible sources for such minute effects abound, and they can rarely be 
assigned unambiguously to any single cause. Gordon and Irvine (1980) illustrated this 
quantitatively by reference to the virial expansion of the Flory-Huggins model, where 
a small perturbation leads to wild oscillation without necessarily destroying the conver- 
gence. The conjectural modern scaling forms often feature series expansions with huge 
coefficients, often alternating in sign. 
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Accordingly, the present calculations should be interpreted as indicating that-over 
the range available to present computer experiments-scaling theory has the merit of 
cancelling the error due to omitting the decay term exp( --En) when fitting finite chains, 
for which r s n and E is finite. This decay term must clearly be present in experiments 
on finite chains. Thus our solution, which is marginally less oversimplified by including 
the exponential decay, leads to the same extrapolated value y 2 1.2 as is obtained by 
the tentative scaling procedures. But at the same time the experiments are seen to 
leave the true asymptotic behaviour of our abstract generic model for SAW on the 
diamond lattice quite open. Indeed, the analysis shows how successive refinements of 
the theory might lead us to refine or to reject our current conjectures concerning the 
asymptotics. The extrapolated value of y is truly the asymptotic value only if E + 0, 
a result which experiments in principle can never prove, and which in practice they 
leave rather open (see figure 5). We have pursued this asymptotic problem, which 
preoccupies theoreticians, in two further stages beyond the crude scaling result. 

Firstly, by including one extra term (exp( --En)), we succeeded above in exhibiting 
some of the cancellation of errors by scaling theory through tracing them to variations- 
over the experimental non-asymptotic range-between the parameters A and y. This 
makes y go through a maximum (2 - y through a minimum) with increasing non- 
intersection range r, while A goes through a minimum. The compensation effect here 
revealed throws some light on previous puzzles concerning crossovers. Utiyama et a1 
(1977) deduced a maximum in y with increasing chain length from their analysis of 
scattering data on polystyrene which we suppressed by introducing the small exponen- 
tial cut-off (table 3). Fujita and Norisuye (1981) point out that the empirical form of 
the crossover effect introduced by FranGois et a1 (1980) also involved a maximum in 
y as a function of n and that this was in contradiction with all previous theories. Our 
Monte Carlo data suggest that the situation is further complicated because the apparent 
exponent and pre-exponential parameters pass simultaneously through a maximum 
and minimum respectively, before entering what may be their asymptotic ranges for 
large r. 

Secondly, to explore this approach, we ascended to yet one further additional term 
by expanding and truncating a plausible function E = ~ ( n )  (equation (28)), whereby 
traditional puzzles were resolved, because different statistical parameters are then seen 
to converge at very different rates. 

The lessons drawn apply equally to the familiar E expansion of renormalisation 
group theory. It is quite common for investigators to rely confidently on convergence 
criteria which are far from compelling. Thus a series might be felt to be asymptotic 
rather than convergent if the O ( E ~ )  estimate is worse than the O ( E * )  estimate in 
comparison with some rival estimate-a typical example occurs in the review by Barber 
(1977, p 55). In most instances, even the existence of the series form postulated by 
renormalisation group theories is not guaranteed by theories at present available. 

The reality of this kind of risk can be illustrated from the very field of the study 
of SAW by reference to a recent debacle with a happy end. Privman (1983) proposed 
an elegant SAW model with a specific restriction to spiral form of the walks on the 
square lattice (see also Blote and Hilhorst 1984, Joyce 1984, Guttmann and Hirschhorn 
1984, Guttmann and Wormald 1984). He made the traditional tentative power law 
assumption that the RMS radius of such walks would go like 

(39) R,  - no.’y 

and by comparing enumeration results for n s 40 with series analysis, he deduced that 
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0 . 5 ~  = 0.62 f 0.06, thus apparently placing this kind of SAW in a different ‘universality 
class’ from that of unrestricted SAW, whose exponent on the square lattice is estimated 
to be O.Sy=0.75. Soon, however, Whittington (1984) found an exact asymptotic 
solution to Privman’s model and independently so did Blote and Hilhorst (1984). The 
latter authors carried the exact asymptotic analysis a stage further to include logarithmic 
terms, and showed that, instead of (39), 

R N  - N”’ In n. 

The fractional power law conjecture has thus been disproved and the universality 
hypothesis could not be applied: the ‘crossover’ would continue at a decreasing pace 
and never reach the other shore, at which the classical and not a ‘universal’ exponent 
y beckons. 

Characteristically, the exact asymptotic solutions for two-dimensional SAW restric- 
ted to spirality were found by combinatorial methods (Blote and Hilhorst 1984, 
Whittington 1984). Our simple equation (3 )  summarises the discrete combinatorial 
situation underlying the asymptotics of subchains occurring in SAW not restricted 
beyond self-avoidance. For unrestricted SAW exact asymptotic formulae are clearly 
very hard to attain, but conjectures 1 and 2 might be amenable to proof in suitable 
cases, and the discrete way forward can at least be discerned. 

The present situation concerning the ‘universality’ approach may accordingly be 
simply summarised. The widely studied asymptotics of SAW are intermediate between 
the case of totally unrestricted random walks, which are proven to satisfy the requisite 
power law assumption with y = 1 ,  and Privman’s SAW with the additional spirality 
restriction, proven not to satisfy the power law assumption. A large literature is based 
on the assumption that the intermediate case of SAW behaves like unrestricted random 
walks in obeying some power law asymptotics. The present work is not intended to 
question this judgement, but rather to rescue promising classical model theories from 
the unfounded accusation that they have been rejected as qualitatively wrong by 
experimental tests on asymptotic exponents using finite test tubes or finite computers. 

We return again to our point that the true merit of scaling theory (or other 
approximate theories) lies in the cancellation of errors. The meritorious cancellation 
of finite-chain effects by scaling theory, illustrated repeatedly and in some detail in 
this paper (e.g. using Bruns’s and McKenzie’s works), is also supported by the exact 
analysis of spiral SAW. Thus Blote and Hilhorst state: ‘We found that the coefficients 
cN for 1 s N S 4 0  are fitted better by Privman’s formulae, . . . , than by our exact 
asymptotic expression . . . ’. In this case, however, too many empirical coefficients ( c N )  
are involved to make the scaling series a useful tool complementary to the known 
exact asymptotic functions. 

Our next paper will include references to representative experiences of theoreticians 
and experimentalists, especially in the field of magnetic transitions, whose own analyses 
of the asymptotic behaviour in experiments on various critical points have (or sometimes 
might have) led them independently to conclusions similar to those drawn here. In 
the light of the malaise evident in the literature, and the surprise occasionally expressed 
by experimentalists at their own results, we shall present a deeper discussion of the 
mathematical situation underlying the two complementary approaches to criticality: 
outward from a presumed singularity of conjectured form, and inward towards the 
critical region. This will show that assumption l a  can be greatly weakened for our 
generic model, so that the series expansion ( 1 3 )  for f( n, r )  need not be assumed any 



A generic model for long self-avoiding chain molecules 3333 

more, while the a priori assumption of a singular free energy or of the existence of a 
fractional power-type scaling series continues to be unnecessary. 
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